

Seat No.: _____

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY**BE - SEMESTER-III(NEW) EXAMINATION – SUMMER 2023****Subject Code:2130002****Date:21-07-2023****Subject Name:Advance Engineering Mathematics****Time:02:30 PM TO 05:30 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

Q.1	(a)	(i) Solve $3e^x \tan y dx + (1+e^x) \sec^2 y dy = 0$.	03
		(ii) Solve $\frac{dy}{dx} + \frac{4x}{x^2+1} = \frac{1}{(x^2+1)^3}$.	04
	(b)	Find the Fourier series expansion of $f(x) = x^2$; $-2 \leq x \leq 2$.	07
Q.2	(a)	(i) Define Signum function and Triangular wave function.	03
		(ii) Solve $y'' + 4y = 8x^2$.	04
	(b)	Find the power series solution of $(x^2 + 1) \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} + xy = 0$.	07
		OR	
	(b)	Find the Fourier series of $f(x) = \begin{cases} x^2 & ; x \in (0, \pi) \\ 0 & ; x \in (\pi, 2\pi) \end{cases}$	07
Q.3	(a)	(i) Find $L(t^2 \cos at)$.	03
		(ii) Find general solution of $y'' + 9y = \sec 3x$ by method of variation of parameters.	04
	(b)	Using convolution theorem, find $L^{-1}\left(\frac{1}{(s^2 + a^2)^2}\right)$.	07
		OR	
Q.3	(a)	(i) Find $L^{-1}\left\{\frac{1}{(s + \sqrt{2})(s - \sqrt{3})}\right\}$.	03
		(ii) Solve $(D^2 - 2D + 1)y = x e^x \sin x$.	04
	(b)	Solve the equation $y'' - 3y' + 2y = 4t + e^{3t}$, when $y(0) = 1$ and $y'(0) = -1$	07
Q.4	(a)	(i) Find $L\left\{\int_0^t e^{-u} \cos u du\right\}$.	03
		(ii) Find Fourier sine series of $f(x) = \pi - x$, $0 < x < \pi$.	04
	(b)	Find the solution of $y'' + 4y = 2\sin 3x$ by the method of undetermined coefficients.	07

OR

Q.4 (a) (i) Find $L^{-1}\left[\log\left(\frac{s+a}{s+b}\right)\right]$. 03
(ii) Solve $\frac{dy}{dx} + \frac{y}{x} = x^3 y^3$. 04

(b) Find the series solution using Frobenious method for $xy'' + y' - y = 0$. 07

Q.5 (a) (i) Derive partial differential equation by eliminating a and b from 03
$$z = (x-a)^2 + (y-b)^2$$
.
(ii) Solve $pz - qz = z^2 + (x+y)^2$. 04

(b) Solve $(D^2 + DD' - 6D'^2)z = y \cos x$. 07

OR

Q.5 (a) (i) Solve $p + q^2 = 1$. 03
(ii) Using Charpit's method solve $z = pq$. 04

(b) Solve $\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$ by separation of variable method. 07
