

Enrolment No./Seat No_____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-IV EXAMINATION – WINTER 2025

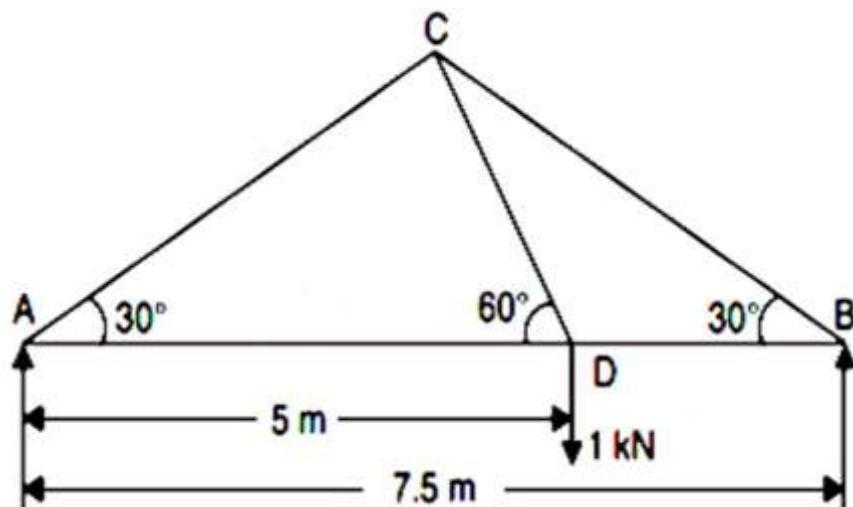
Subject Code:3140101

Date:24-11-2025

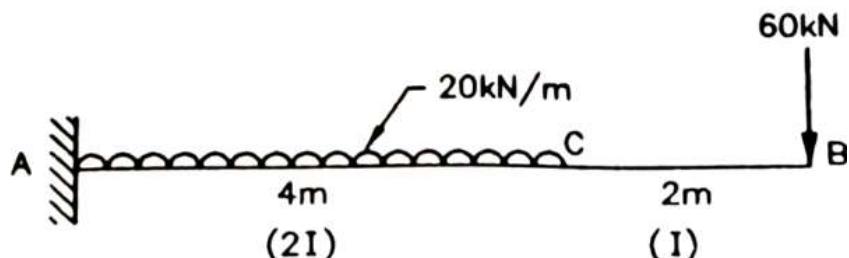
Subject Name:Aircraft Structures

Time:02:30 PM TO 05:00 PM

Total Marks:70


Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.


		MARKS
Q.1	(a) Explain composite materials (b) Define ground load, air load, monocoque, fatigue (c) Write short note on Safe life and fail-safe structures	03 04 07
Q.2	(a) Define truss. Enlist types of truss (b) Define determinate structure. What are the advantages of indeterminate structures? (c) Find out forces in members of truss using method of joint. Refer fig. 1 OR (c) Find slope & deflection at point B for a cantilever beam shown in fig. 2 using Castigliano's first theorem. Take $EI = 10 \times 10^{13} \text{ N mm}^2$	03 04 07 07
Q.3	(a) Explain stress & strain (b) Write statement of moment area theorem I & II (c) Write short note on moment distribution method OR	03 04 07
Q.3	(a) When a force of 1000 N is applied on a body, it gets compressed by 1.2 mm. Determine the strain energy (b) Write statement of Reciprocal theorem in different ways (c) Write difference between flexibility method & stiffness method	03 04 07
Q.4	(a) Explain shear centre (b) Explain applicability of bending theory (c) Explain symmetrical bending with neat sketch OR	03 04 07
Q.4	(a) Explain torsion of beams (b) Write difference between torsion of open section & closed section beams (c) Explain shear of closed section beams	03 04 07
Q.5	(a) Write difference between column & strut (b) Explain bending of thin plate having a small initial curvature (c) Explain energy method to calculate buckling load in column	03 04 07

OR

Q.5 (a) State the assumption made in Euler's theory of column buckling **03**
 (b) A hollow rectangular column having outside dimensions 200 mm **04**
 x 150 mm and inside dimension 150 mm x 100 mm. It's length is 5
 m, it's ends are fixed at both the ends. Calculate Euler's Buckling
 load for the column. Take $E = 2 \times 10^5$ N/mm 2
 (c) Explain in brief buckling of thin plates **07**

Fig. 1

Fig. 2