

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION – SUMMER 2024

Subject Code:3140110**Date:15-07-2024****Subject Name: Fluid Mechanics****Time:10:30 AM TO 01:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		MARKS
Q.1	(a) Define: Pressure, Metacentre, Metacentric height (b) Explain working of Pitot Tube. (c) Derive momentum equation for 2D and 3D in Cartesian coordinate	03 04 07
Q.2	(a) Explain the condition of stability for a submerged and floating body with neat diagram. (b) Derive Bernoulli's equation from Euler's equation and explain each term. (c) Explain Velocity potential and Potential flow.	03 04 07
	OR	
	(c) Derive an expression for discharge over trapezoidal notch section.	07
Q.3	(a) How lift is produced on airfoil? (b) Define 1. Source flow, 2. Sink flow and 3. Free vortex flow. (c) Derive Hagen-Poiseuille equation for laminar flow in the circular pipe.	03 04 07
	OR	
Q.3	(a) What is CFD? State its applications (b) Explain in brief the losses in flow through pipes. (c) Explain working of U-tube Differential manometer.	03 04 07
Q.4	(a) Explain the need of inclined column manometers. (b) Differentiate Ideal and Real Fluids. (c) Derive an expression for total pressure and centre of pressure on a plane surface immersed in a liquid.	03 04 07
	OR	
Q.4	(a) What is Dimensional Homogeneity? Explain with an example. (b) Derive an expression for power absorbed in Journal bearing. (c) Define Reynold's number and give its significant. Explain Reynold's experiment with neat sketch.	03 04 07
Q.5	(a) Compare Eulerian and Lagrangian frame of reference. (b) Explain Newton's law of viscosity. (c) Derive an expression for shear stress and velocity for HAGENPOISEVILLE LAW.	03 04 07
	OR	
Q.5	(a) Define: (i) Atmospheric pressure (ii) Gauge pressure (iii) Absolute pressure. (b) State and prove Pascal's Law (c) Derive the expression of velocity potential and stream function for a source flow.	03 04 07
