

GUJARAT TECHNOLOGICAL UNIVERSITY**BE- SEMESTER-IV EXAMINATION – WINTER 2025****Subject Code:3140110****Date:13-11-2025****Subject Name:Fluid Mechanics****Time:02:30 PM TO 05:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		MARKS
Q.1	(a) Define: Surface tension, Specific gravity and Specific volume (b) Define steady and unsteady flow and laminar and turbulent flow. (c) Explain the condition of equilibrium of submerged bodies with neat sketches.	03 04 07
Q.2	(a) Define Buoyancy and Centre of Buoyancy (b) With the neat sketch explain the working and use of Pitot Tube. (c) Derive Euler's equation of motion along a streamline for an ideal fluid and obtain from it Bernoulli's equation. State all the assumptions made.	03 04 07
OR		
	(c) Derive expression of potential function and stream function for source flow.	07
Q.3	(a) Define Source, Sink and Doublet. (b) What is the difference between U-tube differential manometers and inverted U-tube differential manometer? Where are they used? (c) The following cases represent the two velocity components. Determine the third component of velocity such that they satisfy the continuity equation. <i>(i) $u = x^2 + y^2 + z^2$, $v = xy^2 - yz^2 + xy$</i> <i>(ii) $v = 2y^2$, $w = 2xyz$</i>	03 04 07
OR		
Q.3	(a) Given velocity field $=5x3\hat{i} - 15x2y\hat{j}$; obtain the equation of stream line. (b) Describe the terms atmospheric, absolute, gauge and vacuum pressure with neat sketch. (c) Establish a relation for the average and maximum velocity for one-dimensional viscous flow of fluid between two fixed parallel plates.	03 04 07
Q.4	(a) Compare rectangular and triangular notches. (b) Define (i) boundary layer, (ii) boundary layer thickness, (iii) displacement thickness, and (iv) momentum thickness (c) Derive Darcy-Weisbach equation for loss of head due to: friction in pipes.	03 04 07
OR		
Q.4	(a) Explain, with examples, (i) vortex flow, (ii) forced vortex flow, and (iii) free vortex flow. (b) Explain the role of computational fluid dynamics in the applications of fluid mechanics. (c) Obtain an expression for velocity distribution in terms of average velocity for (i) smooth pipes, and (ii) rough pipes.	03 04 07

Q.5 (a) State few engineering applications of momentum equation. **03**
(b) Write short note on Frames of Reference. **04**
(c) What is a venturimeter? Derive an expression for the rate of flow of fluid through it. **07**

OR

Q.5 (a) What is meant by Geometric, Kinematic and Dynamic similarities? **03**
(b) Define: Path line, stream line, compressible and incompressible flow. **04**
(c) State Hydrostatic law. Derive equation for variation of pressure vertically for a fluid under the gravity. **07**
