

GUJARAT TECHNOLOGICAL UNIVERSITY**BE- SEMESTER-I&II EXAMINATION – SUMMER 2025****Subject Code:3110014****Date:24-06-2025****Subject Name:Mathematics - 1****Time:10:30 AM TO 01:30 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		MARKS
Q.1	(a) Evaluate: $\lim_{x \rightarrow 0} [x^{-2} - \operatorname{cosec}^2 x]$.	03
	(b) Check the consistency of the system of linear equations. Solve it if consistent.	04
	$3x + y - 3z = 13,$ $2x - 3y + 7z = 5,$ $2x + 19y - 47z = 32.$	
	(c) Find the Fourier Series of the function $f(x) = x^2$ in the interval $(-\pi, \pi)$.	07
Q.2	(a) Define the improper integrals of the first kind and the second kind. State the relation between Beta and Gamma function.	03
	(b) Find the area of the surface of revolution generated by revolving the curve $x = y^3$ from $y = 0$ to $y = 2$.	04
	(c) Find eigen values and corresponding eigen vectors of the matrix $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.	07
	OR	
	(c) Find the inverse of the matrix using Gauss-Jordan elimination method.	07
	$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 0 \\ 0 & 1 & 2 \end{pmatrix}$.	
Q.3	(a) Determine whether $\lim_{(x,y) \rightarrow (0,0)} \frac{x^2-y^2}{x^2+y^2}$ exists and find it if exists.	03
	(b) Find the equation of tangent plane and normal line to the surface $2xz^2 - 3xy - 4x = 7$ at the point $(1, -1, 2)$.	04
	(c) Find the extreme values of the function $x^3 + y^3 - 63(x + y) + 12xy$.	07
	OR	

Q.3	(a) State chain rule for $\frac{\partial u}{\partial x}$ for $u = f(v, w)$, where $v = g(x, y), w = h(x, y)$. If $u = f(x - 2y, 2y - 3z, 3z - x)$ then show that $\frac{\partial u}{\partial x} + \frac{1}{2} \frac{\partial u}{\partial y} + \frac{1}{3} \frac{\partial u}{\partial z} = 0$.	03
	(b) Find the directional derivative of $f(x, y, z) = xy^2 + yz^2$ at the point $(2, -1, 1)$ in the direction of the vector $\hat{i} + 2\hat{j} + 2\hat{k}$.	04

(c) The temperature $T(x, y, z)$ at any point in space is $T = 400xyz^2$. Find the highest temperature on surface of the sphere $x^2 + y^2 + z^2 = 1$. 07

Q.4 (a) Evaluate $\int_{-1}^1 \int_0^2 (1 - 6x^2y) dx dy$. 03

(b) Find the value of $\iint_R (2x - y^2) dA$ over the triangular region R enclosed between the line $y = -x + 1$, $y = x + 1$ and $y = 3$. 04

(c) Change the order of integral and evaluate $\int_0^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$, ($a > 0$). 07

OR

Q.4 (a) Calculate $\int_0^2 \int_1^z \int_0^{yz} xyz dx dy dz$. 03

(b) Evaluate $\int_0^1 \int_x^1 \sin y^2 dy dx$. 04

(c) Compute $\int_0^2 \int_0^{\sqrt{2x-x^2}} \frac{x}{x^2+y^2} dy dx$ by transforming into polar coordinates. 07

Q.5 (a) Define Monotonic sequence. Test the convergence of the sequence $\{2 - (-1)^n\}$. 03

(b) Express the function $f(x) = \log(1 + x)$ in power series using the formula of Maclaurin's series. 04

(c) (i) Test the convergence of $\sum_{n=1}^{\infty} \frac{n!}{(2n+1)!}$. 07

(ii) State Cauchy's root test and discuss the convergence of $\sum_{n=1}^{\infty} \frac{1}{(\log n)^n}$.

OR

Q.5 (a) State sandwich theorem for sequence. Show that the sequence $u_n = \frac{\sin n}{n}$ converges to zero. 03

(b) Using Taylor's theorem find the approximate value of $\sqrt{10}$ up to three decimal places. 04

(c) (i) Examine the convergence of the series $\frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} - \frac{1}{5 \cdot 6} + \frac{1}{7 \cdot 8} - \dots \dots \dots$. 07

(ii) State Cauchy's Integral test for convergence of series and test the convergence of the series $\sum_{n=1}^{\infty} n^2 e^{-n^3}$.
