

GUJARAT TECHNOLOGICAL UNIVERSITY**BE - SEMESTER- III (NEW) EXAMINATION – SUMMER 2022****Subject Code:2130003****Date:11-07-2022****Subject Name:Mechanics of Solids****Time:02:30 PM TO 05:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		MARKS
Q.1	(a) Define terms: (i) Space (ii) Time (iii) Rigid body	03
	(b) Two forces $P=6$ N and $Q=10$ N act on a particle and their line of actions are inclined to each other at angle of 70° . Find resultant of these forces.	04
	(c) Define: Equilibrant. Find equilibrant of the force system shown in fig.1	07
Q.2	(a) Write the assumption made in analysis of trusses.	03
	(b) Distinguish between perfect truss, deficient truss and redundant truss.	04
	(c) Find the resultant of the force system acting on a body OABC as shown in fig. 2. Also find the point where the resultant cuts the X axis.	07
	OR	
	(c) Explain in brief various types of beams and differentiate it in determinate or indeterminate beam.	07
Q.3	(a) Define: (i)Shear force (ii) Bending moment diagram (iii) Point of zero shear.	03
	(b) Derive relationship between rate of loading, shear force and bending moment with usual notations.	04
	(c) Find support reaction for the beam shown in fig. 3.	07
	OR	
Q.3	(a) Define friction and state the laws of dry friction.	03
	(b) Explain following terms: (i) Angle of friction (ii) Angle of repose (iii) Co-efficient of friction (iv) Limiting friction	04
	(c) Draw shear force and bending moment diagrams for the beam shown in fig.4.	07
Q.4	(a) State Pappus-Guldinus theorems and its applications.	03
	(b) List down the assumptions made for the theory of pure bending.	04
	(c) Show that if the coefficient of friction between the block and the plane is 0.25, the force required to just start the block moving up the 40° incline is $F= 1.38$ W while the force required to hold the block from sliding down the plane is $F= 0.487$ W.	07
	OR	
Q.4	(a) Define : (i) Stress (ii) Poisson's ratio (iii) Bulk modulus	03
	(b) A steel bar of length 500 mm has a circular cross section of diameter 50 mm. Determine the change in length if it is subjected to axial pull of 100kN. Take $E =200$ GPa.	04
	(c) Find the moment of inertia of Z-section as shown in fig. 5 about its both centroid axes.	07

Q.5 (a) Define : (i) Neutral Layer (ii) Section Modulus (iii)Radius of curvature **03**
 (b) Draw the shear stress distribution diagram for given shapes **04**
 (i) O (ii) L (iii) H (iv) Square
 (c) Calculate the total change in length and stresses in each portion for steel bar as shown in Fig. 6. Take $E = 200$ GPa **07**

OR

Q.5 (a) Define : (i) Principle plane (ii) Modulus of rigidity **03**
 (iii) Torsional rigidity
 (b) State assumption made in theory of torsion. **04**
 (c) A short column of 25 mm diameter carries a compressive load of 35 kN. For a plane inclined at 60° with the direction of the load, determine the normal, shear and resultant stresses. Also find the maximum shear stress and obliquity of the resultant stress. **07**

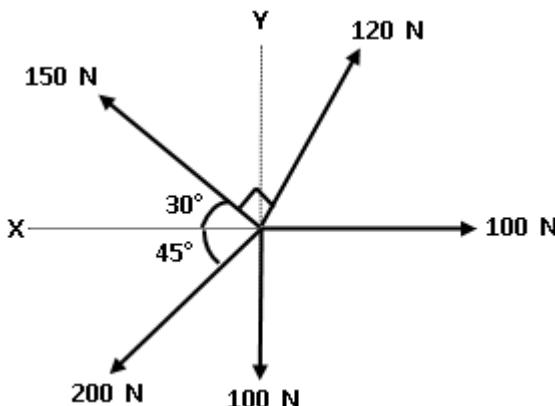


Fig. 1

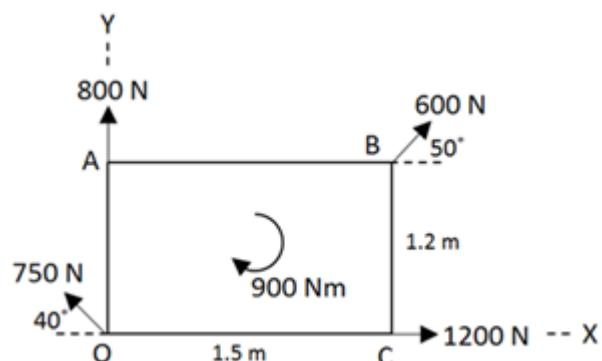


Fig. 2

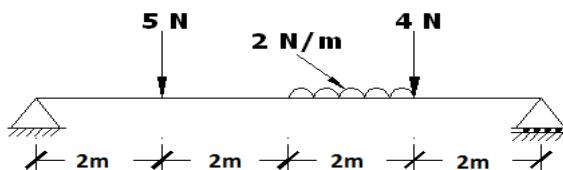


Fig. 3

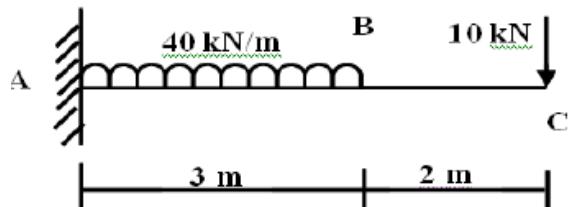


Fig. 4

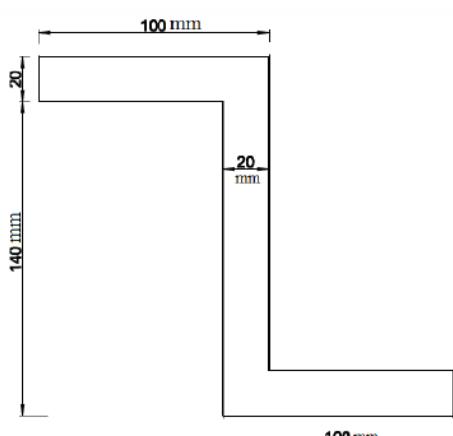


Fig. 5

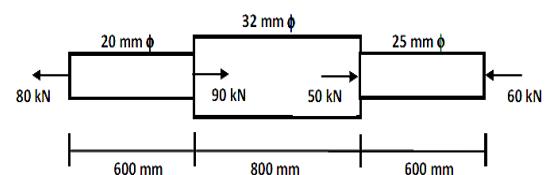


Fig. 6
