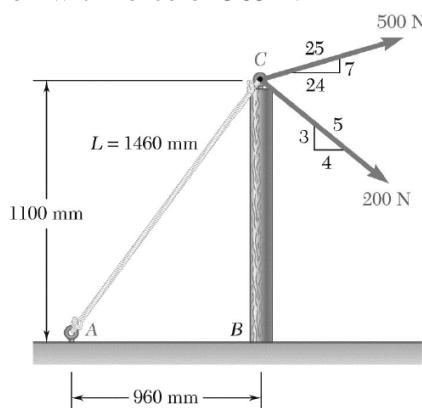
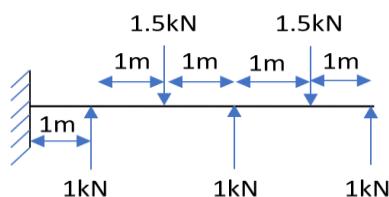


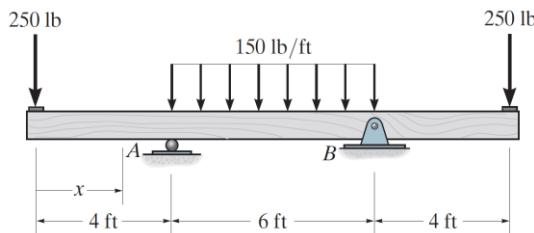
GUJARAT TECHNOLOGICAL UNIVERSITY**BE - SEMESTER-III EXAMINATION – SUMMER 2025****Subject Code:2130003****Date:13-06-2025****Subject Name:Mechanics of Solids****Time:02:30 PM TO 05:00 PM****Total Marks:70****Instructions:**


1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

MARKS

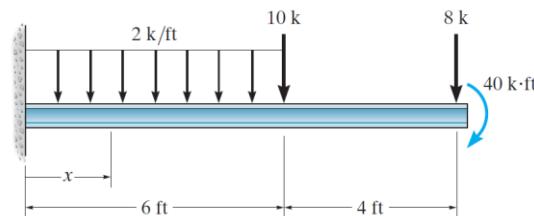

Q.1 (a) Write Difference between Load and Force with Example **03**
 (b) Use law of parallelogram and solve the below example using graphical method. **04**

(c) Determine the resultant of the three forces exerted at point C of post BC, assume that Rope AC is in tension with force of 365 N **07**

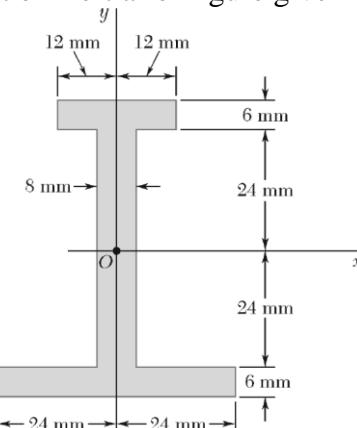


Q.2 (a) Find reactions for beam given below **03**

(b) Determine Support Reactions for beam given below.


04

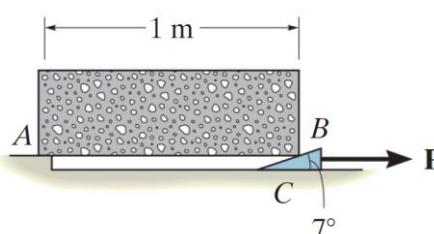
(c) Draw Shear force and Bending Moment Diagram for Q.2 (b) **07**


OR

(c) Draw Shear force and Bending Moment Diagram for Beam given below. **07**

Q.3 (a) Explain different definition of Static friction, Kinetic Friction & Angle of Repose. **03**

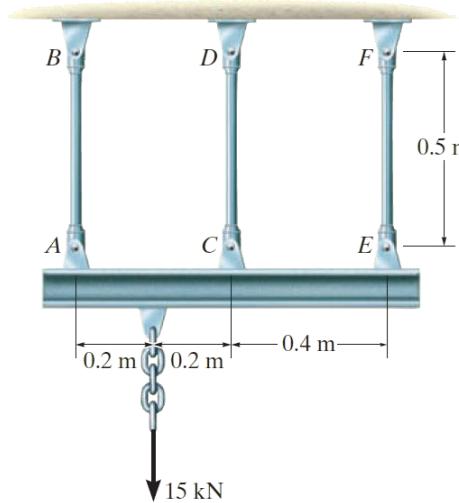
(b) Determine Second Moment of Inertia for figure given below. **04**


(c) Determine the static coefficient of friction if There is cargo of weight W which is start moving when trailer of the truck is raised and inclined at an angle of $\Theta = 25^\circ$. **07**

OR

Q.3 (a) Determine Centroid, Center of Gravity and Center of Mass **03**

(b) Assume a concrete block of size 1m width x 1m breadth x 3m height, Locate the distance of a point at which if force is exerted than it will not overturn but starts slide only. Consider unit weight of concrete is 24 kN/m^3 and coefficient of friction is 0.5. **04**


(c) The uniform stone in Fig. given below has a mass of 500 kg and is held in the horizontal position using a wedge at B . If the coefficient of static friction is $\mu_s = 0.3$ at the surfaces of contact, determine the minimum force P needed to remove the wedge. Assume that the stone does not slip at A . **07**

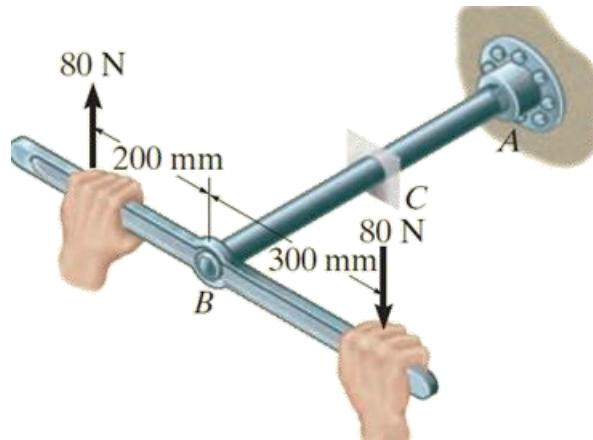
Q.4 (a) Define Shear and Complementary Shear. **03**

(b) For a figure given below determine the stress developed in it, the Bar AB & EF has cross section area of 50 mm^2 & CD has cross section area of 30 mm^2

04

(c) There are two shafts one with solid diameter 100mm and another is tube with Outer Diameter 100mm and 25mm thickness are made of a material having an allowable shear stress of 75 MPa. Determine the maximum torque that can be applied to each cross section.

07


OR

Q.4 (a) For a square beam of size $50\text{mm} \times 50\text{mm}$ made up of steel with Young Modulus $E = 2 \times 10^5 \text{ MPa}$ for a simply supported beam of 500mm span, calculate maximum UDL it can take with allowable bending stress of 250MPa.

03

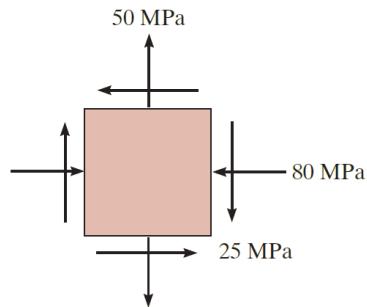
(b) The pipe shown in Figure below has an inner radius of 40 mm and an outer radius of 50 mm. If its end is tightened against the support at A using the torque wrench, determine the shear stress developed in the material at the inner and outer walls along the central portion of the pipe.

04

(c) Write steps to develop the Mohr's Circle of stress.

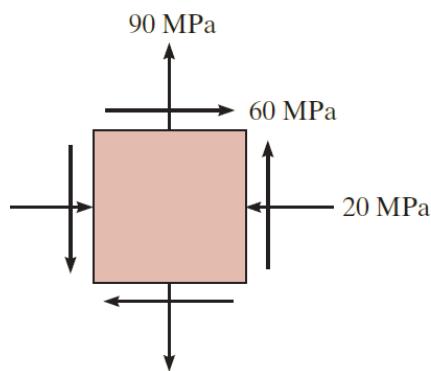
07

Q.5 (a) Define Isotropic material, Homogenous Material & Bulk Modulus


03

(b) Calculate Maximum shear force capacity of a beam having $100\text{mm} \times 100\text{mm}$ size, if its allowable shear stress is 100MPa.

04


(c) The state of plane stress at a point is represented on the element shown in Figure. Determine the state of stress at this point on another element oriented 30° clockwise from the position shown.

07

OR

Q.5 (a) Explain Hooke's Law with Mild Steel Stress strain curve. **03**
 (b) Calculate maximum bending stress developed in a circular pipe having Outer Dia 1500mm and thickness of 20mm, if it is filled fully with water and span of 5m and simply supported condition. **04**
 (c) The state of stress at a point just before failure of this shaft is shown in Figure. Represent this state of stress in terms of its principal stresses. **07**
