

Seat No.: _____

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION – WINTER 2023

Subject Code:2130003

Date:12-01-2024

Subject Name:Mechanics of Solids

Time:10:30 AM TO 01:00 PM

Total Marks:70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

	MARKS
Q.1	03
(a) Explain principle of transmissibility and superposition	03
(b) State and explain parallelogram law of forces	04
(c) Find magnitude and direction of resultant of force system shown in Fig.1	07
Q.2	03
(a) Differentiate moment and couple	03
(b) Find the moment of all the forces about point O given in fig. 2 Consider size of the square as 1 cm x 1 cm.	04
(c) Determine support reaction for the given beam shown in Fig.3	07
OR	
(c) Two shafts A of 700 kN and B of 400 kN are supported as shown in fig. 4 Neglecting friction at the contact surfaces P, Q, R and S, determine the reactions at all contact surfaces.	07
Q.3	03
(a) Explain (a) Homogeneous material (b) Yield strength (c) Prismatic section	03
(b) A circular brass rod of 2m length is subjected to axial pull of 15kN. What should be the diameter of the rod so that stress should not be more than 120 N/mm ² and elongation should not be more than 6mm. Take E = 120 GPa.	04
(c) Draw shear force and bending moment diagram of the beam shown in Fig. finding values at all important points on the beam.	07
OR	
Q.3	03
(a) Illustrate stress Vs strain graph for a standard mild steel bar. Show all the salient points on the graph.	03
(b) In a standard tensile test, a bar of 20mm diameter undergoes elongation of 14mm in a gauge length of 150mm and a decrease in diameter of 0.85mm at a tensile load of 6 kN. Determine the Poisson's ratio.	04
(c) A rectangular block of 525mm x 230mm x 115mm is subjected to following load (i) on 230 x 115mm face 1550 kN tensile (ii) on 525 x 230 mm face 2575 kN tensile (iii) on 525 x 115mm face 2100 kN compressive. Find the strain on all directions. Take Poisson's ratio as 0.25 and E = 2 x 10 ⁵ N/mm ² .	07
Q.4	03
(a) Differentiate centroid and center of gravity.	03
(b) Explain laws of friction	04

(c) Find moment of inertia of a given section in fig. 6 about its centroidal axis 07
OR

Q.4 (a) Explain different types of supports with their reactions. 03
 (b) Locate the Centre of Gravity of composite 3d object shown in fig.7 (all dimensions are in mm) 04
 (c) Determine the horizontal force on block required to cause (i) impending motion downward and (ii) impending motion upward. Refer fig. Take $\mu = 0.55$. 07

Q.5 (a) Write assumptions made in theory of pure torsion. 03
 (b) Draw shear stress distribution diagram for following sections (i) rectangle (ii) Hollow circular (iii) hollow rectangular (iv) L section. 04
 (c) A simply supported beam of 3m span is subjected to central load 'W' and having rectangular cross section 275mm x 425mm. If permissible shear stress is 3 N/mm^2 Calculate maximum permissible load on beam in bending and shear. 07
OR

Q.5 (a) Write the assumptions made in the theory of pure bending. 03
 (b) A shaft is required to transmit 1MW at 240 rpm. If the shear stress is not to exceed 55 N/mm^2 determine the required diameter of the shaft. 04

(c) A material is stressed by shear 5 N/mm^2 , axial compression 3 N/mm^2 in X-direction and axial tension 7 N/mm^2 in Y direction. Calculate
 (i.) Normal and tangential stress on plane making 60° with X-axis.
 (ii) Maximum normal stress with their locations.

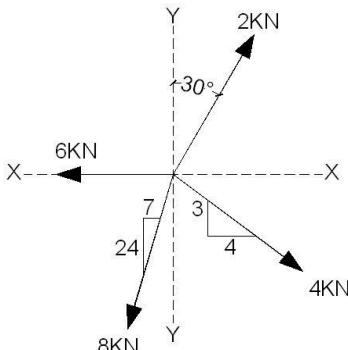


Fig. 1

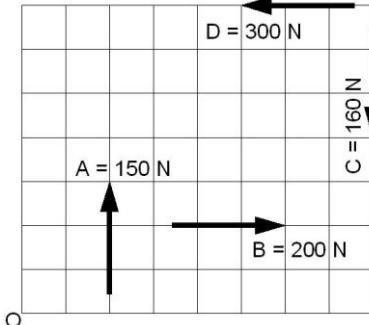


Fig. 2

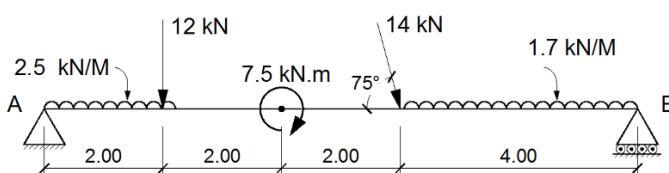


Fig. 3

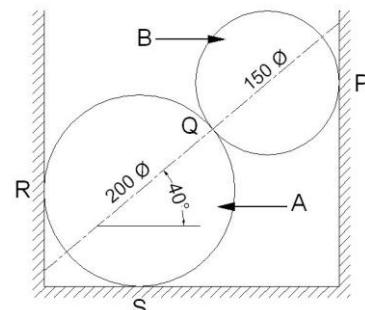


Fig. 4

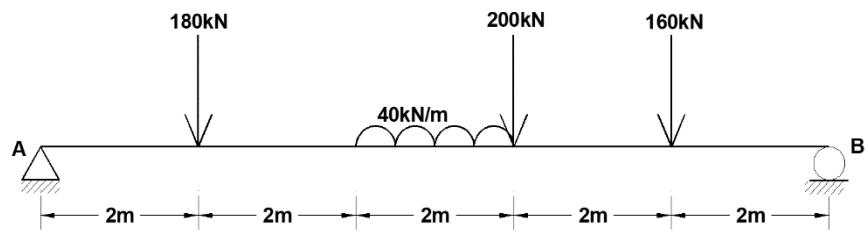


Fig. 5

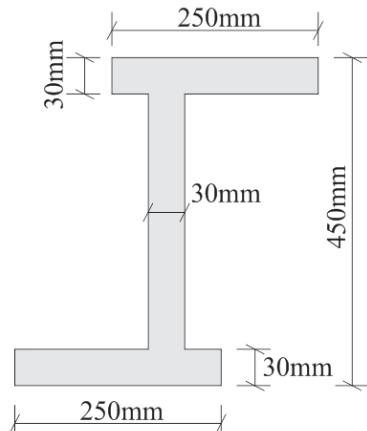


Fig. 6

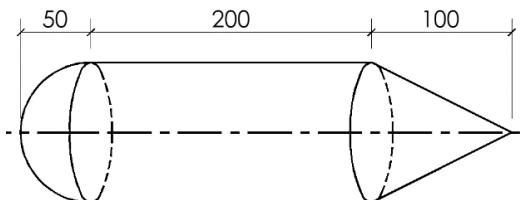


Fig. 7

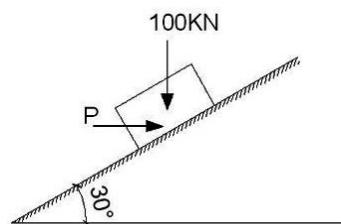


Fig. 8
