

GUJARAT TECHNOLOGICAL UNIVERSITY**BE- SEMESTER-III (NEW) EXAMINATION – WINTER 2024****Subject Code:2130003****Date:21-11-2024****Subject Name: Mechanics of Solids****Time:10:30 AM TO 01:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

MARKS

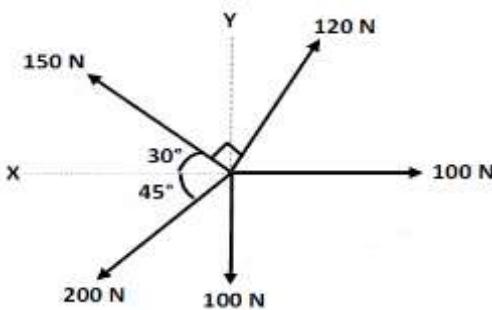
Q.1	(a) Define force. Discuss its characteristics.	03
	(b) Define :(i) Modulus of elasticity (ii) Stain (iii) Volumetric strain (iv) Shear stress	04
	(c) Determine resultant of coplanar concurrent force system shown in fig.1.	07
Q.2	(a) Explain: Thermal stress	03
	(b) The equilateral triangle of 50 mm side as shown in fig. 2 is subjected to three forces. Third force is unknown force alongside AC. If the resultant of force system is pure couple, find third unknown force and its direction.	04
	(c) Calculate the total change in length for the steel bar shown in fig.3.	07

OR

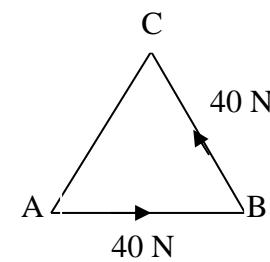
(c) The rail in railway track is designed to have no stress at temp of 10°C. If the temperature rises to 50°C , find the maximum stress produced in rail. Take $E = 200 \text{ Gpa}$, $\alpha = 11.7 \times 10^{-6} /^\circ\text{C}$	07	
(i) If no allowance is made for expansion.		
(ii) If allowance of 1.25 mm expansion is made for every 10 m length of rail		
Q.3	(a) State Lami's theorem and explain its significance in mechanics.	03
	(b) Differentiate: (i) Resultant & Equilibrant (ii)Moment & Couple	04
	(c) Determine support reactions for the beam shown in fig. 4.	07

OR

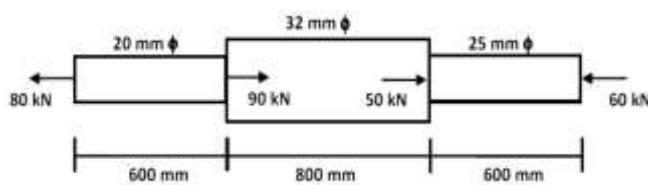
Q.3	(a) Define: (i) Bending moment diagram (ii) Point of Zero shear (iii) Point of contra flexure	03
	(b) Enlist and explain types of beam with necessary sketch.	04
	(c) Draw shear force and bending moment diagrams for the beam shown in fig.5.	07
Q.4	(a) Differentiate between static friction, dynamic friction and limiting friction.	03
	(b) State parallel and perpendicular axes theorems and its applications.	04
	(c) A ladder 5.2 m long, weighing 250 N is placed against a smooth vertical wall with its lower end 2 m from the wall. The co-efficient of static friction between the ladder and the floor is 0.25. A man weighing 70 kg starts climbing the ladder; determine the distance 'x' of man from the wall so that the ladder starts slipping.	07

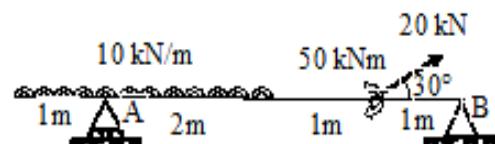

OR

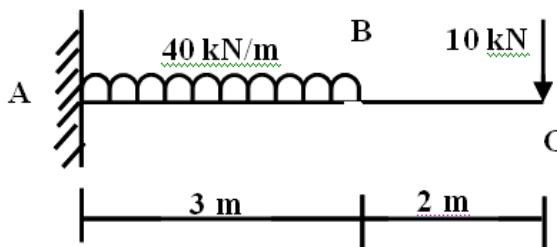
Q.4	(a) Define: (i) Neutral Layer (ii) Section Modulus (iii) Radius of Curvature	03
	(b) The cross-section of the beam is a rectangle 60 mm x 80 mm deep. The maximum shear stress in the section is 45 MPa. Calculate shear stress at a section: (i) 40 mm above NA (ii) 20 mm above NA	04
	(c) Find centroid of area shown in fig. 6	07


Q.5 (a) Draw shear stress distribution diagram for I, T and L sections. 03
 (b) Derive relationship between rate of loading, shear force and bending moment. 04
 (c) Prove with usual notations the bending equation: $M/I = f/y = E/R$ 07

OR


Q.5 (a) What do you mean by Principal Planes and Principal Stresses? 03
 (b) A steel shaft 50mm diameter and 0.5m long is subjected to a twisting couple of 10^3 N.m; the total angle of twist being 0.6° . Find the maximum shearing stress developed in the shaft and modulus of rigidity. 04
 (c) At a point in a strained body there are normal stresses of 100 MPa and 60 MPa both tensile together with a shear stress of 30 MPa, acting on two mutually perpendicular planes. Locate the principal planes and principal stresses. Also find the maximum shear stress. 07


Fig.1


Fig.2

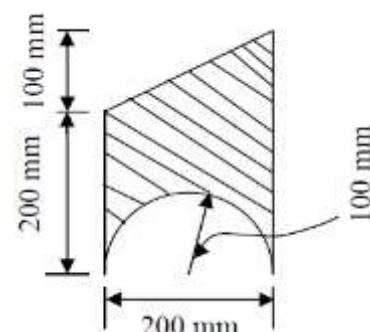

Fig.3

Fig.4

Fig.5

Fig.6
