

GUJARAT TECHNOLOGICAL UNIVERSITY**BE - SEMESTER-III EXAMINATION – SUMMER 2025****Subject Code:3130107****Date:13-06-2025****Subject Name: Partial Differential Equations and Numerical Methods****Time:02:30 PM TO 05:00 PM****Total Marks:70****Instructions:**

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Simple and non-programmable scientific calculators are allowed.

		MARKS																
Q.1	(a) State the Simpson rule for numerical integration.	03																
	(b) State and describe the formula for Picard's method	04																
	(c) Implement the method of least square to fit a second-degree curve $y = a_0 + a_1x + a_2x^2$ for the following data	07																
	<table border="1" style="border-collapse: collapse; width: 100%;"> <tr> <td>x</td><td>1</td><td>1.5</td><td>2</td><td>2.5</td><td>3.0</td><td>3.5</td><td>4.0</td></tr> <tr> <td>y</td><td>1.1</td><td>1.3</td><td>1.6</td><td>2.0</td><td>2.7</td><td>3.4</td><td>4.1</td></tr> </table>	x	1	1.5	2	2.5	3.0	3.5	4.0	y	1.1	1.3	1.6	2.0	2.7	3.4	4.1	
x	1	1.5	2	2.5	3.0	3.5	4.0											
y	1.1	1.3	1.6	2.0	2.7	3.4	4.1											
Q.2	(a) Solve $z=(x+a)(y+b)$	03																
	(b) Evaluate using method of successive approximation for the function $\sin x = \frac{x}{2}$	04																
	(c) Find a real root for the function using Newton Raphson method correct upto three iterations places $f(x) = \cos x - 3x - 1$ using $x_0 = 0$	07																
	OR																	
	(c) Given that the equation $x^3 - 2x - 5 = 0$ has a root between 2 and 3 use Regula-Falsi method to find it.	07																
Q.3	(a) State the backward interpolation formula	03																
	(b) Find the polynomial corresponding to the data	04																
	<table border="1" style="border-collapse: collapse; width: 100%;"> <tr> <td>x</td><td>0</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td></tr> <tr> <td>y</td><td>-10</td><td>-8</td><td>-8</td><td>-4</td><td>10</td><td>40</td></tr> </table>	x	0	1	2	3	4	5	y	-10	-8	-8	-4	10	40			
x	0	1	2	3	4	5												
y	-10	-8	-8	-4	10	40												
	(c) Evaluate using Trapezoidal and Simpson 1/3 rd rule $\int_0^1 \frac{1}{1+x} dx$ $h=0.25$	07																
	OR																	
Q.3	(a) Brief the Inverse Lagrange's interpolation formula	03																
	(b) Apply Simpson's 1/3 rd rule to evaluate $\int_0^{0.3} \sqrt{1 - 8x^3} dx$ with $h = 0.075$	04																
	(c) Use appropriate Newtons interpolation formula to compute $y(1.6)$ from the table	07																
	<table border="1" style="border-collapse: collapse; width: 100%;"> <tr> <td>x</td><td>1</td><td>1.4</td><td>1.8</td><td>2.2</td></tr> <tr> <td>y</td><td>3.49</td><td>4.82</td><td>5.96</td><td>6.5</td></tr> </table>	x	1	1.4	1.8	2.2	y	3.49	4.82	5.96	6.5							
x	1	1.4	1.8	2.2														
y	3.49	4.82	5.96	6.5														

Q.4 (a) State successive approximation formula for IVP **03**
 (b) Solve $(y+z)p-(x+z)q=x-y$ **04**
 (c) Describe the Runge Kutta 4th order method and use it to solve **07**

$$\frac{dy}{dx} = \frac{y-x}{y+x}, y(0) = 1 \text{ compute } y \text{ for } x=1$$

OR

Q.4 (a) State the algorithm of successive approximation **03**
 (b) Solve $z^2(p^2z^2 + p^2a^2) = 1$ **04**
 (c) Solve using Taylors series method $y'' - xy' - y = 0, y(0) = 1$ and determine $y(0.1)$ **07**

Q.5 (a) Solve $z=px+qy+pq$ **03**
 (b) Solve $(D^2 + 10DD' + 25D'^2)z = e^{3x+2y}$ **04**
 (c) Solve partial differential equation using variable separable method $u_{xx} = a^2u$ **07**

OR

Q.5 (a) Solve $(D^2 - 3DD' + 2D'^2) = 0$ **03**
 (b) Solve to obtain the particular integral for $4r + 12s + 9t = e^{3x-2y}$ **04**
 (c) A tightly stretched string with fixed ends $x=0$ and $x=L$ is initially in a position given by $u(x, 0) = u_0 \sin^3(\frac{\pi x}{L})$. If it is released at rest from this position, find the displacement $u(x, t)$. **07**
